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FOREWORD

The work described herein was performed by the General Electric
Company under the sponsorship of the National Aeronautics and Space
Administration under Contract NAS 3-2140. 1Its purpose, as outlined
in the contract, is to evaluate the corrosion resistance of high
strength columbium alloys, to boiling and condensing potassium, as
potential containment materials for space electric power conversion
systems.

R.G. Frank, Manager, Physical Metallurgy, Materials and Processes,
administered the program for the General Electric Company. Experi-
mental investigations were performed by L.B. Engel, Jr., R.G. Carlson,
and D.N. Miketta (deceased), with the assistance of W.H. Hendrixson,
H.J. Bauer and D.R. Caldwell.

Mr. R.L. Davies, of the National Aeronautics and Space Administration
was the Technical Manager for the study. Recognition is also extended
to Mr. T.A. Moss for his assistance in monitoring the program.
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I. INTRODUCTION

Advanced turboelectric space power systems will require the contain-
ment of alkali metals at temperatures approaching 2200°F with possible
hot spots at considerably higher temperatures. Only refractory alloys
can be considered for the construction of such systems and, even then,
critical components of the system will be strength limited. Conse-
quently, there will be a reduction in system weight when the strongest
alloy possible is used within the restrictions of system reliability.
Recognizing the strength-weight requirement for service at tempera-
tures up to 2200°F, in conjunction with the complex fabrication and
joining involved in the construction of the system, it is apparent
that columbium alloys have significant potential for accommodating
these requirements in the near future.

Additionally, it is imperative to provide materials with suitable
corrosion resistance to alkali metals and, although not fully docu-
mented, columbium alloys have also shown promising results in this
respect. The only extensive experience obtained in the containment
of alkali metals by columbium alloys preceding initiation of this
program, however, had been with the relatively weak Cb-1Zr alloy, and
it was generally recognized that a stronger alloy would offer a signi-
ficant advantage for the advanced space electric power systems. This
investigation was undertaken to document the behavior of AS-55 and
D-43 columbium base alloys in an environment of refluxing potassium
for periods up to 10,000 hr at temperatures of approximately 2000°F.

The AS-55 designation represents a columbium-base alloy with approxi-
mately 5% tungsten, 17 zirconium, and 0.06% carbon, which is arc melted
with an addition of approximately 17 yttrium to the electrode (much of
the yttrium removed as the volatile yttrium oxide (Y0O) during vacuum
melting). The yttrium is added primarily to enhance both the fabri-
cability, by the removal of oxygen during melting, and the weldability,
by gettering of oxygen during welding. The D-43 designation represents
a columbium-base alloy with approximately 107% tungsten, 1% zirconium,
and 0.17 carbon. Inclusion of both alloys in the program permits the
evaluation of two levels of carbon in the same alloy system and provides
two alloys with varying strength/fabricability/weldability character-
istics: i.e., the AS-55 alloy has a higher degree of fabricability and
weldability; the D-43 alloy, a higher strength potential.1 Also, both
alloys contain reactive elements (zirconium, yttrium) which are strong
oxide formers that react with the oxygen in solution in the columbium-
tungsten base. Such alloys are expected to be compatible with alkali
metals.




Both alloys are essentially in the columbium-tungsten-zirconium-
carbon quartenary alloy system and achieve their superior strength
by a combination of two basic strengthening mechanisms: solid so-
lution of tungsten in a columbium matrix and dispersion of carbides
formed by reactions between zirconium, columbium, and carbon. The
use of the latter strengthening mechanism to increase the tempera-
ture capabilities of refractory alloys is considered generally to
be very effective. However, the carbides that are formed during
the processing of the material and that subsequently inhibit slip
by impending dislocation glide must be chemically and thermally
stable in the gresence of potassium for a minimum 10,000 hr in the
2000°F to 2200°F temperature range. Determining the chemical and
thermal stability of the complex carbides in AS-55 and D-43 alloys
under these conditions, therefore, constituted one of the principal
technical objectives of this program. The major objective, as
discussed earlier, was the documentation of the corrosion resistance
of these alloys to potassium at 2000°F over a period of 10,000 hours.

Eight corrosion capsules were tested and evaluated. One set of
four capsules (two AS-55 alloy, one D-43 alloy, and one Cb-1Zr alloy)
was exposed to refluxing potassium for 5000 hr; a second set of four
capsules was similarily exposed for 10,000 hr. The results obtained
from the 5000-hr tests were reported in Interim Report 2 (reference 2);
the results of the 10,000-hr capsule tests are reported here. For
clarity and continuity, many details of capsule preparation and testing
procedures reported previously (reference 2) are either repeated com-
pletely or summarized in this report.
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IT. SUMMARY

Corrosion testing of four reflux capsules, two AS-55, one Cb-1Zr,
and one D-43, containing purified potassium, was conducted at 2000°F
for 10,000 hr in a8 ultra-high vacuum chamber capable 8f achieving a
vacuum of 2 x 10719 torr. A vacuum in the 10~8 to 10~ torr range
was maintained throughout testing. The condensing rate of the po-
tassium contained within the one-in. diameter x 1l-in. long capsules
was approximately 37 + 12 1b/hr/ft2 at 2000°F.

Evaluation of the Cb-1Zr alloy capsule (No. 7) after the 10,000-hr
exposure revealed a small amount of black deposit, accompanied by a
gold discoloration of the metal around or near the deposits, on the
inner surface of the capsule wall in the region between the primary
condensing zone and the liquid zone. These black deposits were
identified as essentially pure zirconium with a high oxygen content;
some columbium was also present. The deposits probably resulted from
zirconium and oxygen being leached from the primary condensing zone
by the potassium condensate. Such leaching was substantiated by the
small reduction in zirconium and oxygen content observed in the primary
condensing zone with a corresponding grain growth to a depth of 6 mils
on the inner surface of this zone. Similar zirconium deposits and
grain growth effects were not observed in the AS-55 and D-43 alloy
capsules.

Evaluation of the AS-55 alloy capsule (No. 9) revealed discoloration
on the inner surface of the capsule wall in the region between the
primary condensing zone and the liquid zone. The extent of the dis-
coloration observed in the AS-55 alloy capsule (No. 9) was signifi-
cantly less than that found in the Cb-1Zr alloy capsule (No. 7). A
small amount of white, nommetallic deposit, believed to be Y03, was
observed in localized areas on the inner surface of the AS-55 alloy
capsule (No. 9).

An improved potassium transfer system was employed to.fill the
second AS-55 alloy capsule (No. 11) and the D-43 alloy capsule (No. 4)
and no signs of staining, evidenced in the earlier capsules, were
observed in either capsule after the 10,000-hr exposure. As in the
case of AS-55 alloy capsule No. 9, however, a small amount of a white,
nonmetallic deposit, believed to be Y503, was observed in localized
areas on the inner surface of AS-55 alloy capsule No. 11.

Chemical analyses of samples obtained from the capsule walls revealed
no significant mass transfer of carbon with.either the AS-55 or D-43
alloy. However, the results of the chemical analyses indicate that
oxygen can be leached from the material located in the region where
the freshly distilled potassium condenses.



Coalescence of the carbides in the grain boundaries apparently
occurred in the AS-55 and D-43 alloys and, as expected, stress-
rupture testing of specimens machined from the capsule walls after
the 10,000-hr exposure revealed a significant decrease in strength.
This is an indication of thermal instability that is not necessarily
associated with the presence of potassium.

Overall, only a small amount of corrosion, consisting primarily
of staining and black deposits of zirconium, the formation of yttrium
compound believed to be Y, 0,, and leaching of oxygen from the capsule
material by the potassium;, Was observed. The amount of staining and
black deposits was either reduced or eliminated in those capsules
which were filled using the improved potassium transfer system showing
the absolute necessity of proper handling to reduce contamination
in alkali metal systems. In general, the materials exhibited
excellent corrosion resistance. There was no significant solution
attack or penetration of the grain boundaries in either the weldments
or the base metal of any of the alloys tested.




ITI. TECHNICAL PROGRAM

Materials Procurement

The General Electric Company produced . .the AS-55 alloy sheet used
to manufacture capsules for this program.. Three heats, NAS-555,
NAS-5514 and NAS-5515, were utilized in the capsule preparation.
Heats NAS-555 and NAS-5514 were consumably arc cast, forged, warm
rolled and, subsequently, cold rolled to produce 0.080-in. thick
sheet; heat NAS-5515 was consumably arc cast, extruded, warm rolled
and, subsequently, cold rolled to 0.082-in. thick sheet.

The D-43 alloy sheet was procured from the E.I. duPont de Nemours
Company. It was produced from an ingot which was consumably arc
cast, extruded, warm rolled and finished by cold rolling to 0.080-in.
thick sheet.

The Cb-1Zr alloy sheet was purchased from the Stellite Division,
Union Carbide and Carbon Corporation. The ingot was electron beam
melted, forged and cold rolled to 0.100-in.- thick sheet.

Processing details of the heats are summarized in Appendix A.
Chemical analyses of the finished sheets are given in Table I and

the final heat-treating history is recorded in Table II.

Capsule Preparation

Eight capsules, two Cb-1Zr alloy, two D-43 alloy and four AS-55
alloy, were fabricated from the 0.080-in. thick sheet described
above. The sheets were roll formed into cylinders 11 in. long
and approximately one in. in diameter. A set of formed capsules,
together with machined end caps and bend specimens, is shown in
Figure 1. The heat-treatment histories of the capsules before
forming, after forming, and after TIG welding are presented in
Table II.

The TIG welding was performed in a chamber which was first evacu-
ated to a pressure of less than 1 x 1077 torr and then backfilled
with helium which had been passed through a dry-ice trap. Before
welding each capsule, a weld pass was made on a sheet of titanium
to getter oxygen in the system and thereby minimize contamination
of the weldments during the welding process. The filler material
used during the welding was the same as the capsule material.

Table III gives typical chemical analyses of such welds in Cb-1Zr
alloy sheet; Figure 2 shows typical welded capsule tubes. Although
weldments made in the manner described are sound and considered
satisfactory for the intended application, significant improvements
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have been made in TIG welding equipment and procedures for refractory
alloys in the past several years, as evidenced by work conducted
under recent NASA sponsored research and development contracts.3”

Two fill tubes, 0.5-in. OD x 0.040-in. thick wall, were fabricated
from each of the AS-55 and Cb-1Zr alloy capsule materials and TIG
welded to the top end caps, also fabricated from the capsule material.
Subsequently, the top end cap and fill tube subassemblies and the
bottom end caps were TIG welded to the formed and welded capsule
cylinders. 1In the case of the AS-55 alloy capsule No. 8 and capsule
No. 9, short lengths of 0.500-in. OD x 0.040-in. thick wall, center-
less ground Cb-1Zr alloy tubing were TIG welded to the top of the
AS-55 alloy fill tube to facilitate crimping of the fill tube after
filling with potassium. Thé length of Cb-1Zr alloy tubing was removed
after the capsule was sealed. The capsule components were pickled in
an acid solution of 207HF+207%HNO3+607H20, rinsed in water, and given
a final cleaning with ethyl alcohol before specimen placement and
assembly welding. Figure 3 is a schematic of the AS-55 alloy capsule
design. Except that it is monometallic, the Cb-1Zr alloy capsule
design (capsule Nos. 6 and 7) is the same as that depicted for the
AS-55 alloy capsule.

As shown in Figure 3, all four capsules (Nos. 6, 7, 8, and 9) con-
tained 0.080-in. thick x 0.5-in. wide x 2-in. long bend specimens,
made from the same material as theilr respective capsules, in the
liquid and vapor regions. The interiors of the capsules, with bend
specimens in position, were examined with a borescope and no detri-
mental defects could be observed in the welds. The capsules were
leak checked with a helium mass spectrometer, as prescribed in
MIL-Std-271B, and found leak tight. A radiographic examination of
the four capsules demonstrated their welds to be sound. Figure 4
is a photograph of Cb-1Zr alloy capsule No. 6 and capsule No. 7 and
AS-55 alloy capsule No. 8 and capsule No. 9 before filling with po-
tassium.

Capsules 6, 7, 8, and 9 were charged with slagged, filtered, dis-
tilled and hot trapped potassium, as received from Mine Safety
Appliance Research Corporation, using the facilities shown in Figure 5
and these outlined procedures:

1. Evacuate the capsule loading system to below 1 x 10~3 torr.

2. Heat the system to above 150°F to permit outgassing.

3. Close vacuum valve (A) to seal the capsule under a vacuum;
close vacuum (B) to isolate the system from the vacuum
pumps.

4., Flush the system, other than the capsule, with argon by
opening valves (C and D).
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Figure 3.
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5. Re-evacuate the system to below 1 x 1073 torr by closing
valves (C and D) and opening valve (B).

6. Refill the system with argon.

7. Close one argon valve (D); leave other argon curtain flow
valve (E) open.

8. Force potassium through the system by opening valve (F) and
potassium storage container valve (G) until potassium flows
from the argon curtain opening.

9. Allow the potassium to stay in the system 3 to 5 minutes.
10. Force new potassium into the system (see 8 above).

11. Close valve (C) to seal potassium in a sampling tube: close
valve (F) to confine a measured amount of potassium.

12. Open capsule valve (A); simultaneously open argon valve (D)
to force the measured length of potassium into the capsule (H).

13. Seal the capsule by closing valve (A), pinching down the
tubing and welding in a vacuum by electron beam.

Table IV lists the chemical analysis of the slagged, filtered, dis-
tilled, and hot trapped potassium used to fill capsules No. 6, No. 7,
No. 8, and No. 9 as obtained from the vendor. The potassium was
analyzed for metallic elements by the Nuclear Materials and Equipment
Corporation using spectrographic techniques and for oxygen by MSA
Research Corporation using the mercury amalgamation method. The po-
tassium was sampled at the same time and under the same conditions
that the four reflux capsules, No. 6, No. 7, No. 8, and No. 9, were
filled and was analyzed for oxygen by the zirconium-gettering technique.
In this technique, a 0.005-in. thick corrugated zirconium strip, of
known chemistry, with a total 20 in.“ surface area, was inserted in
a one-in. OD x 0.080-in. thick wall x 6-in. long Cb-1Zr alloy capsule.
The capsule was filled with 7.14 grams of potassium, using the facility
illustrated in Figure 5, sealed under vacuum by electron beam welding
techniques, and heated for 100 hr at 1400°F in a vacuum of 10~ torr.
After exposure, the zirconium strip was removed from the capsule and
analyzed for oxygen, nitrogen, hydrogen and carbon. From the inter-
stitial analyses, and assuming that the interstitial elements com-
pletely reacted with the zirconium and no gaseous pilckup occurred
during the transfer of the potassium, the oxygen and carbon contents
of the potassium were calculated to be 760 ppm (an average of four
analyses) and 133 ppm, respectively. The data are presented in
Table IV (ff.) and Table I (Appendix B). No significant change in the
nitrogen or hydrogen could be detected in the zirconium getter material.

Oxygen analyses of the potassium used to fill capsules No. 6, No. 7,

No. 8, and No. 9 also were obtained by the mercury amalgamation method
at General Electric. In this case, however, the samples were drawn at
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a later date. The samples were taken by removing sections of tubing
between valves G and F of the filling apparatus shown .in. Figure.5.
Analysis of these samples produced values of 7 and 16 ppm oxygen as
K,0, Table IV. These data indicated that contamination was occurring
during the filling of the capsules. To preclude this problem, a new
potassium transfer facility was successfully developed and subsequently
was used in filling the remaining two AS-55 alloy capsules (No. 1l and
No. 12) and the two D-43 alloy capsules (No. 2 and No. 4).

The potassium transfer facility developed is similar to the trans-
fer facility at NASA Lewis Research Center and consists of a 30 kv,
electron beam welding chamber incorporating facilities for transferring
potassium directly from the hot trap to the capsules in a vacuum of
5 x 10~5 torr with a leak rate of 1.4 micron-cubic¢ feet per hour.

The pumping system comprises a 10-in., oil diffusion pump and a 80 cfm
Stokes Microvac mechanical forepump. The vacuum is measured with a
National Research Corporation Type 501 ionization gauge and Model 710B
control circuit. Figure 6 is an external view of the facility with
the hot trap in place; Figure 7 shows the general capsule arrangement
inside the chamber. The potassium is transferred to the capsules by
pressurizing the hot trap, filling the stainless steel ladle with the
potassium to the required level (30 grams), and then pouring the po-
tassium through the stainless steel fumnel into the capsule using a
vacuum rotary feedthrough. After the capsule 1id is manually placed
on the capsule with the manipulator, the capsule is automatically
positioned under the electron beam gun on the motor driven carriage
and the 1id is seal-welded to the top of the capsule as the capsule
is rotated on its own axis. A series of six capsules can be filled
without breaking the vacuum.

The remaining two AS-55 alloy capsules (No. 11 and No. 12) and the
two D-43 alloy capsules (No. 2 and No. 4) were TIG welded, leak checked,
and cleaned in a similar manner to that employed for the first two
AS-55 alloy capsules (No. 8 and No. 9) and the two Cb-1Zr alloy cap-
sules (No. 6 and No. 7) except that fill tubes were not required on
these capsules. Bend specimens, 0.060-in. thick x 0.5-in. wide x 2-in.
long, were also placed in these capsules. Subsequently, the four
capsules were charged with slagged, filtered, and hot trapped potassium
from Shipping Container No. 137 using the newly developed vacuum filling
system.

Analyses of the as-received potassium from Container No. 137 used to
fill capsules No. 11, No. 12, No. 2, and No. 4 were supplied by the
MSA Research Corporation and are shown in Table IV. Before filling
the corrosion test capsules, six additiomal analyses of the as-received
potassium for oxygen (two by the zirconium-gettering technique
previously described and four by the mercury amalgamation method)
were performed at General Electric. These data are listed in Table IV.
The method of sampling used for these analyses consisted of filling
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three separate lengths of 0.5-in. diameter stainless steel pipe.

One end was attached to the shipping container and the open end was
exposed to flowing argon. After allowing approximately 250 grams of
potassium to flow through the pipe, the contained potassium was per-
mitted to solidify in two of the pipes and the ends wére capped in
air. Valves had been installed on each end of the third length of
pipe and here the sample was obtained without exposing the ends to
air. This pipe and one of the pipes capped in air were transferred
to the electron beam welding facility and, after evacuation and back-
filling with argon, the potassium was melted and cast into the Cb-1Zr
alloy gettering capsules which were subsequently sealed under vacuum
by electron beam welding. The potassium in the remaining length of
pipe capped in air was analyzed by the mercury amalgamation method.
The oxygen content determined by the zirconium-gettering technique,
again consistently higher than that determined by the amalgamation
method, is attributed to contamination from oxygen in the argon used
in the welding chamber during transfer of the potassium to the
gettering capsules. Note that there is little difference in the
oxygen results obtained by the zirconium-gettering method as a function
of the sampling method. The oxygen values from both methods, however,
are considerably higher than the 17 ppm reported by MSA.

To assure that high purity potassium be used in the remaining cap-
sule corrosion tests, approximately 16 1b of the as-received potassium
from Container No. 137 were re-hot trapped at General Electric in a
titanium~lined, zirconium-gettered container for 200 hr at 1300°F
before being used to fill the capsules. The oxygen content of the
potassium sampled from the hot trap after the hot trapping operation
was approximately 21 ppm as analyzed by the mercury amalgamation
method.

Additional chemical analyses of metallic impurities were also
obtained on the potassium from Shipping Container No. 137 at an in-
dependent laboratory both before and after the 200~hr, 1300°F hot
trapping operation; these values are recorded in Table IV.

In an independent study at this laboratory to evaluate the accuracy
of the mercury amalgamation method for oxygen in potassium, three
samples were obtained from Shipping Container No. 137 in lengths of
stainless steel pipe which had been evacuated and outgassed, before
filling with potassium, and subsequently capped in air. One sample
was analyzed at General Electric by the mercury amalgamation method;
two were sent to General Atomics to be analyzed by the neutron acti-
vation method where the potassium was melted and transferred to the
copper capsules under purified helium.’ The results, shown in
Table IV, are in relatively good agreement. It should be noted that
the handling procedures used in obtaining the earlier samples from
Shipping Container No. 137 are suspect and, for this reason, the
latter results are believed to be more representative of the actual
oxygen content of the as-received potassium.
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To determine whether the re-hot trapped potassium was contaminated
during the transfer and filling of the reflux corrosion capsules using
the vacuum capsule filling facility, two samples were taken for the
analyses of oxygen while the capsules were filled. One sample tube
was filled with potassium inside the chamber in the same manner in
which the corrosion capsules were filled; the other potassium sample
was taken from the transfer line outside the chamber immediatelly
above the hot trap container. Results obtained on these samples by
the mercury amalgamation method are’ listed in Table IV.

A one-in. diameter x 10-in. long ancillary Cb-1Zr alloy capsule
containing zirconium getter material was also charged with potassium
during the actual filling of the corrosion capsules and sealed in an
identical manner to that used for the test capsules and the sample
tube used for the mercury amalgamation analyses. After a 100-hr
exposure at 1400°F, the zirconium getter in the ancillary capsules
was analyzed for oxygen, nitrogen, and hydrogen by the wvacuum fusion
techniques., From these data, recorded in Table IV of this section
of the report and Table III of Appendix B, the calculated oxygen
level in the potassium was found to be 22 ppm, which is in good agree-
ment with the results obtained by the mercury amalgamation method,
i.e., 33 ppm to 50 ppm. Therefore, the oxygen content of the po-
tassium in capsules No. 11, No. 12, No. 2, and No. 4 was presumably
less than 50 ppm.

After being filled with approximately 30 grams of potassium, all
eight capsules were enclosed in tantalum foil and pre-tested in a
vacuum of approximately 4 x 1073 torr at 2000°F for 15 minutes to
insure capsule integrity. Subsequently, the eight capsules were
grit blasted with -280 mesh alundum powder, using an air pressure
of 50 psig, to obtain a high surface emittance.

Testing Procedures

) *
Three tantalum-clad, Pt vs Pt+13ZRh, Al,04 insulated thermotouples

were attached to each capsule: one at the top; one at the radiating
zone; one con the bottom immediately below the heater zone. Thermo-
couple placement, heater location, and radiation shielding are shown
in Figures 8 and 9.

Four instrumented reflux capsules (No. 6, No. 7, No. 8, and No. 9)
and their respective heaters and shielding were secured in a Varian
ultra-high vacuum chamber C-III. This type vacuum equipment consist
of an 18-in. diameter x 30-in. high bakeable chamber connected to a

*Purchased from Thermo Electric Company, Inc. Typical purity of
the A1203 is 99.657% with the following maximum impurity levels: SiO,,
0.08%; Fep043, 0.10%; Nap0, 0.06%; MgO, 0.08%; Ca0O, 0.08%Z; ZrOp, 0.03%;
Cc, 0.01%; B, 0.0001%.
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400 L [sec getter—ion pump and three cryogenic molecular sieve roughing
pumps (Figure 10). Initial evacuation of the chamber to approximately
2 torr is accomplished with a mechanical pump and, subsequently, to

the 10~3 torr range with the cryogenic adsorption pumps. Final evacu-
ation to the ultimate pressure in the 10710 torr range is accomplished
with the getter-ion pump after a suitable bakeout period. Pressure

is measured by a Bayard-Alpert type ionization gauge attached to the
side of the chamber.

After installing capsules No. 6 and No. 7 (Cb-1Zr alloy) and No. 8
and No. 9 (AS-55 alloy) in the ¥acuum chamber, the chamber was evacu-
ated to a pressure of 7.0 x 107’ torr and baked out at 400°F for 8 hr
after which the pressure reached 7.0 x 1077 torr. Subsequently, the
capsules were heated to 2000°F with the pressure being held below
3.0 x 107" torr during the entire heat-up cycle. Although some un-
stable boiling was evident during heat-up, the instability appeared
to subside when the test temperature was reached. The four capsules
were held at the test temperature of 2000°F for 5000 hr.

A pressure rise was encountered at the end of approximately 4500 hr
when the coolant water to the vacuum bell jar was_accidently turned
off. The pressure reached a maximum of 7.0 x 10”7 torr for a short
time and dropped quickly when the coolant water was restored. At
the end of 5000 hr exposure, the chamber was openeéd and capsules
No. 6 (Cb-1Zr alloy) and No. 8 (AS-55 alloy) were removed from the
chamber and evaluated. The results were reported in Interim Report 2.
Capsules No. 7 (Cb-1Zr alloy) and No. 9 (AS-55 alloy) resumed testing
at 2000°F to complete the 10,000 hr. Two pressure excursions occurred
during the last 5000 hr. After 5900 hr of testing, a pressure rise
was encountered when a transformer in the getter-ion pump power
supply failed. Although a maximum pressure of approximately 1 x 10~/
torr was reached for a brief period, the pressure dropped quickly
when a portable getter-ion pump power supply was incorporated in the
system. The faulty power supply was repaired and put back in service
without further interruptions in testing. The second pressure rise
was encountered after approximately 8950 hr of testing when the main
power switch for the getter-ion pump yas accidently turned off. The
pressure reached a maximum of 8 x 10”7/ for a short period but dropped
quickly when the switch was turned back on. The pressure profile for

capsules No. 7 (Cb-1Zr alloy) and No. 9 (AS-55 alloy) over the 10,000-hr

test period is shown in Figure 11.

Reflux capsules No 11 and No. 12 (AS-55 alloy) and No. 2 and No. 4
(D-43 alloy) were installed in the Varian ultra-high vacuum chamber
C-II, which is similar to chamber C-III, and instrumented in the same
manner as capsules No. 6, No. 7, No._8, and No. 9. The chamber was
evacuated to a pressure of 5.0 x 107/ torr, as measured by a Bayard-
Alpert type ionization gauge attached to the side of the chamber.
During heat-up to the test temperature of 2000°F, the pressure reached
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a maximum of 4.4 x 1076 torr. After approximately 3000 hr of testing,
the chamber was opened to repair a heater which was shorting to the
tantalum shielding. At the end of the 5000-hr exposure, the chamber
was opened and capsules No. 12 (AS-55 alloy) and No. 2 (D-43 alloy)
were removed from the chamber for evaluation. The rssults of these
5000-hr tests are also reported in Interim Report 2. Capsules No. 11
(AS-55 alloy) and No. 4 (D-43 alloy) were put back on test to complete
the 10,000 hr of testing. After approximately 7200 hr, the test was
shutdown so that the entire test facility could be moved to a new
laboratory. Testing was resumed and completed without difficulty;

the chamber was not opened at any time during this move. The pressure
profile for capsules No. 11 (AS-55 alloy) and No. 4 (D-43 alloy) over
the 10,000-hr test period is shown in Figure 12.

Temperature control was accomplished by using a voltage regulated,
variac controlled supply to a step-down transformer which fed the
power to the tantalum heaters. Two heaters were connected in series
so that only two power supplies were required for testing four capsules.
The average measured temperatures of capsules No. 7, No. 9, No. 11,
and No. 4 during testing are shown in Tables V and VI.

Two commonly used techniques for determining the reflux rate of
potassium in capsules are: 1) a direct calculation of the heat
radiated from the condensing region of the capsule to the vacuum
chamber wall and 2) an indirect calculation of the heat radiated from
the condensing region by the subtraction of the heat losses occurring
in the capsule, in regions other than the condensing region, from the
total heat input to the capsule. Because of the difficulties in de-
termining the heat losses of the capsules in the experimental setup
described in this report, the heat radiated from the condensing region
of the capsule to the vacuum chamber wall was calculated using the
first method cited. The heat flux was calculated using the equation

- r 1 —
Yo T A T E T JT1 7 T 1
€ A2 €5
Assuming coaxial cylinders and T2 = O°R
and letting Al = 0.0327 ft2 (radiating area of capsules)
A2 = 7.85 ft2 (absorbing area of chamber)
€ = 0.4 (emissivity of capsule)
€, = 0.2 (emissivity of chamber)
Tl = 2410°R (temperature of cagsule surface)
§ = 0.174 (10-8) Btu hr-l fe- (Stefan-Boltzmann's

constant)
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then,

q, = 762 Btu/hr

The refluxing rate w (1b/hr/ft2) is calculated from the equation

w = Elg_ 2
HVA3
where H = 745 Btu/lb for potassium at 1950°F (reference 8)
Ag = 0.0275 £ft2 (area of condensing surface)
Then,

w = 37.2 lbs/hr/ft2

The reflux rate, however, can vary significantly with variations
in the measured and assumed test conditions. By letting the emittance
of the radiating surface ¢; vary from 0.3 to 0.5, the emissivity of
the chamber wall e, vary from 0.1 to 0.3, and the temperature of the
radiating surface vary from 1900°F to 2000°F, it,is possible for the
reflux rate to vary from a minimum 25.2 lb/hr/ft2 to a maximum 51.1
1b/hr/ft2. Further, if it is assumed that half the radiating surface
of the capsule is exposed to a heat sink that is at a temperature of
approximately 1000°F, which is probably more realistic in the case of
the test setup for these capsules, similar calculations using equations
1 and 2 show the_possible range for the reflux rate to be 23.4 1b/hr/ft2
to 48.0 1b/hr/ft2. Overall, the refluxing rate probably was approxi-
mately 37 + 12 1b/hr/ft2.

It should be noted that, in more recent work at General Electric
under NASA sponsor‘ship,5 a facility has been built and operated which
provides a more accurate determination of the heat flux from the con-
densing region of the capsule than either of the previously discussed
techniques. This facility utilizes a heat exchanger around the con-
densing region of the capsule. The heat from the capsule is radiated
to the heat exchanger and is transferred to a flowing water system,
allowing an accurate heat balance to be performed on the water system.

Results of 10,000-Hr Reflux Capsule Corrosion Tests

One Cb-1Zr alloy capsule (No. 7), two AS-55 alloy capsules (Nos. 9
and 11), and one D-43 alloy capsule (No. 4), containing purified po-
tassium, completed the 10,000 hr of testing at 2000°F under refluxing
conditions. Visual examination of the Cb-1Zr alloy capsule No. 7
revealed discolorations in the region between the primary condensing
zone and the liquid zone (Figure 13). Also found in this region were
black deposits with a gold discoloration of the metal around or near
the deposits (Figure 14).
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Sectioned Cb-1Zr Alloy Reflux Corrosion Capsule No. 7 After

Figure 13.

Hr Exposure to Potassium at 2000°F in a Vacuum of 10

,000-

10

Torr.
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Figure 14.

Black Deposits and Discoloration Observed on Inner Surface of
Cb-1Zr Alloy Corrosion Capsule No. 7 Between Primary Condensing
Zone and Liquid Zone After 10,000-Hr Exposure to Potassium at
2000°F in a Vacuum of 10™° Torr.

Mag.: 2 X

=33=




In addition, a change in the general surface appearance of the heat-
affected zone of the weld and a more lustrous appearance in the
surface above the liquid zone was noted.

Metallographic examination of that region where the deposits were
observed revealed a buildup of one phase to a thickness as extensive
as 0.002 in.; a second phase also observed was considerably thinner
and less abundant (Figure 15). Electron microprobe analyses revealed
that both phases had the same composition, i.e., essentially all
zirconium (Figure.l5) with a small amount of columbium. The low
zirconium content observed in Figure 15.b results from the fact that
the area of the electron beam is larger than the deposit being
analyzed; when .an appropriate area correction is applied, the de-
posit is essentially.all zirconium. Oxygen, nitrogen, or carbon
were not detected. .Note, however, that the detectable limits for
oxygen, nitrogen, and.carbon using the electron microprobe analyzer
are somewhat questionable.. Although detection of these elements
above one to two wt.% has been achieved at this laboratory, detection
below one to two wt 7%, especially for oxygen and nitrogen, is con-
sidered very doubtful. The larger and more abundant dark grey phase
is believed to be <a-zirconium; the less abundant phase, retained
B —-zirconium. Also, significantly, the electron microprobe analyses
revealed a zirconium content of approximately 5% in the capsule wall
adjacent to the deposits compared with a zirconium content of 1.3% as
determined by chemical analysis of the original sheet before test
and by electron microprobe analyses of the capsule.0D in the con-
densing zone after the test exposure. As discussed on page 52,
metallographic examination of “the capsule inside diameter surface
suggests that the zirconium observed in the deposits was leached
from the condensing zone. It should be noted that the presence of
zirconium deposits is not a general condition inasmuch as they were
not found in the AS-55 and D-43 capsules, suggesting that either
these alloys behave differently or that the potassium purity in-
fluences the zirconium transfer. Both D-43 capsules_andfthe AS-55
capsule No. 11 were filled with potassium using the improved vacuum
filling facility and, as will be discussed, the yttrium, rather than
the zirconium, in AS-55 would appear to dominate any interactions
with oxygen contained as an impurity in the potassium.

The AS-55 alloy capsule No. 9 also showed discoloration, to a much
lesser degree than those found in Cb-1Zr alloy capsule No. 7, in the
region between the primary condensing zone and the liquid zone
(Figure 16). A dark grey spot surrounded by a white deposit, similar
to those observed in AS-55 alloy capsule No. 12 which was tested
5000 hr, was noted on the inside wall in the liquid region opposite
the location where a thermocouple was attached to the outer wall.
Metallographic examination of this region revealed a 0.0002-in. thick
buildup which is suspected to be Y,04 (Figure 17). Also, as in
capsule No. 7 (Cb-1Zr alloy), a change in the generdl surface appearance
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Figure 15. Photomicrographs and Electron Microprobe Analyses of Deposits
Observed in Region Between Primary Condensing Zone and Liquid
Zone of Cb-1Zr Alloy Reflux Corrosion Capsule No. 7 After
10,000-Hr Exposure to Potassium at 2000°F in Vacuum of 10 ~ Torr.
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Sectioned AS-55 Alloy Reflux Corrosion Capsule No. 9 After

Figure 16

10,000-Hr Exposure to Potassium at 2000°F in a Vacuum of
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in Liquid Zone Opposite Thermocouple Location on Outer Wall

After 10,000-Hr Exposure to Potassium at 20000F in a Vacuum
of 1077 Torr.
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in the heat-affected zone of the weld and a more lustrous appearance
above the liquid zone were observed.

AS-55 alloy capsule No. 11, which was filled with potassium using
the vacuum filling facility discussed earlier, showed no discolorations
in the region just above the liquid zone (Figure 18). White deposits,
however, also similar to those seen previously in the 5000-hr AS-55
alloy capsule No. 12, were found in three locations on the inside
surface of AS-55 capsule No. 11: two in the liquid region; one in
the vapor region. In the previous capsules, viz., 5000-hr tests,
the white deposits were found in the liquid zone only. Figure 19
shows the white deposits that formed on the weld in the liquid zone;
Figure 20, a deposit on the parent metal in the liquid region opposite
the point where a thermocouple was in contact with the capsule wall.
Although most of the deposited material was bonded loosely to the
capsule surface and tended to spall, metallographic examination of
the weld in the liquid zone revealed some deposited material that
apparently was more adherent (Figure 21).

Yttrium was the only metal detected by spectrographic analyses of
the white deposits in the AS-55 alloy capsules. Similarily, electron
microprobe analyses of the deposits observed metallographically con-
firmed that yttrium was the only major constituent. X-ray diffraction
studies of the deposits were unsuccessful in identifying the structure.
Therefore, it is postulated that the deposit is Y,05 formed by the
oxidation of yttrium in the potassium and on the surface of the capsule
wall. The primary mechanism believed to account for the presence of
Y,0, at localized areas on the capsule wall assumes the existence of
localized areas in the capsule wall which can provide a relatively
large source of oxygen and effect the oxidation of yttrium that is in
solution with the potassium at these specific locations. In the case
of the weld metal, a high oxygen concentration could exist because of
contamination during the welding operation. The presence of high
oxygen concentration in localized spots in the parent metal opposite
thermocouple junctions is most likely because of diffusion of oxygen
from the thermocouple insulation resulting from nonstoichiometry,
entrappment of air during swagging, or from impurities in the A1203.
The latter possibilities recommend the use of bare thermocouple wires.

A second mechanism that could play a part in the formation of Y,0
1
at localized areas is the mass transport of yttrium caused by a small
localized temperature gradient and the subsequent oxidation of the
yttrium to Y,0 by reaction with oxygen in the potassium and/or in
the capsule material. Since the location of the deposits either was
at the bottom corner of the capsules or corresponded to the location
where the tantalum-sheathed thermocouples had bonded to the outer
capsule wall, heat could possibly be extracted from the capsule wall
at these locations by conduction through the capsule support at the
bottom and by conduction along the tantalum sheath to result in

"cold spots'.
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Figure 19. White Deposit Observed in Weld in Liquid Zone of AS-55 Alloy
Reflux Capsule No. 11 After %0,000-Hr Exposure to Potassium
Op =
at 2000”F in a Vacuum of 10 TOTE., Mag.: 3X
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Figure 20. White Deposits Observed on Inside Surface of AS-355 Alloy Reflux
Capsule No. 11 in Liquid Zone (Top) Opposite Thermocouple
Location on the Capsule Wall (Bottom); Capsule Exposed to
Potassium for 10,000-Hr at 2000°F in a Vacuum of 1079 Torr.

Mag.: 3X
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Figure 21.

(A160211)

Adherent White Deposit Observed cn Weld in Liquid Zone of
AS-55 Alloy Reflux Corrosion gapsule No. 11 After 10,000-Hr
Exposure to Potassium at 2000 F in a Vacuum of 10792 Torr.

Etchant: None Mag.: 1000X
N.A.: 0.85
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Both mechanisms cited assume some solubility of yttrium in potassium.
As discussed previously, although the solution of yttrium in potassium
has not been observed experimentally, yttrium has been demonstrated
soluble to some extent in a lithium-columbium system at 1500°F.9

After sectioning, the D-43 alloy capsule No. 4 revealed no deposits
and a lustrous appearance throughout. The liquid-vapor interface and
the vapor-condenser interface (Figure 22) were more discernible than
those observed in the 5000-hr D-43 alloy capsule No. 2.

In addition to visual examination, the following tests were conducted
on specimens machined from the capsule wall (Figure 23) to evaluate the
effect of the 10,000-hr exposure to the potassium and to the ultra-high
vacuum on the capsule material:

Chemical analyses.
Metallographic examination.
Hardness measurements.

Weight and thickness measurements.

. Bend tests on samples contained within the capsule.

A LW N

. Stress-rupture tests at 2000°F on specimens machined from
the AS-55 alloy and D-43 alloy capsule walls.

Chemical Analyses. Results of chemical analyses of samples taken at
locations shown in Figure 23 are recorded in Table VII. In an attempt
to determine the gradient in chemical composition from the internal
surface to the external surface, three 0.080-in. thick specimens were
taken from the walls of the capsules at each location. The outer two
thirds of material was removed from one specimen; the inner two thirds,
from the second specimen; the inner and outer one third, from the third
specimen. The remaining material was analyzed for oxygen, nitrogen,
hydrogen, and carbon.

Differences observed in the nitrogen and hydrogen contents of any
of the capsules are not considered significant; variations are attri-
buted to inhomogeneity in the sheet and inaccuracies in the analyses.
Similarly, no significance is attached to changes observed in the
carbon content of capsules Nos. 4 (D-43 alloy), 11 (AS-55 alloy), and
9 (AS-55 alloy). The increase in carbon content observed in the in-
side sample from the vapor zone of capsule No. 7 (Cb-1Zr alloy) may
result from the liquid potassium, high in impurities near the liquid-
vapor interface, splashing upon the capsule wall and being gettered
by the zirconium deposit detected visually and metallographically
on the inside diameter of that region. Other changes in carbon con-
tent observed in capsule No. 7 are insignificant. No mass transfer
of carbon was evident in any of the capsules.
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Figure 22. Sectioned D-43 Alloy Reflux Corrosion Cgpsule No. 4 After
10,000-Hr Exposure to Potassium at 2000 F in a Vacuum of
102 Torr.
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The oxygen concentration in the outer wall portions of essentially
all the capsules increased. The increase in oxygen in the outside
specimens 1is accredited to the fact that the outer surface of the
capsules were grit blasted with Al,0,. Similar increases were ob-
served in the outer surfaces of capsules exposed for 5000 hr. More
recent work performed at this laboratory has demonstrated that the
apparent oxygen contamination from grit blasting with A120 is severe;
a 0.0175-in. thick sheet of Cb-1Zr alloy eghibited on oxygen increase
of 842 ppm after grit blasting with Al,04.

A comparison of the oxygen analyses from the inner wall speci-
mens from Cb-1Zr alloy capsules Nos. 6 (exposed 5000 hr) and 7 (exposed
10,000 hr), indicated that 1) the oxygen content in the condensing
zone of capsule No. 7 was significantly lower than that of capsule No. 6
2) the oxygen content in the vapor zone of capsule No. 7 was considerably
larger than that of capsule No. 6. Essentially no difference was ob-
served in the oxygen contents in the liquid zone. These data are illu-
strated in Figure 24. An examination of the oxygen analysis of the
inner portion of the capsule wall before the 10,000-hr exposure to po-
tassium suggests that leaching of oxygen by the high purity condensate
occurred in the condensing zone of capsule No. 7. The high oxygen con-
centration in the vapor zone of the Cb-~1Zr alloy capsule No. 7 may be
the result of a gettering action of the zirconium deposits observed
visually and metallographically on the inside diameter of that region.
The oxygen could be supplied by the condensate, now rich in oxygen
from the condensing zone, and/or the liquid potassium, high in impurities
near the liquid-vapor interface, washing upon the capsule wall in that
region. Since the changes in oxygen content observed in capsule No. 6
after a 5000-hr exposure appear to be amplified in the 10,000-hr exposure
(capsule No. 7), some leaching of oxygen from the condensing zone
possibly could have occurred in Cb-1Zr alloy capsule No. 6 and not
been recognized because the reported oxygen content of the Cb-1Zr alloy
before exposure may be slightly lower than the actual oxygen content.
In any case, the transfer of oxygen during the 5000-hr testing was
very small. Also, any gettering action of the Cb-1Zr alloy in the
liquid zone in both the 5000-hr capsule (No. 6) and 10,000-hr capsule
(No. 7) would appear to be relatively small. In view of the leaching
in the condensing zone more pronounced evidence of increased oxygen
throughout the liquid zone would ordinarily be expected. As indicated,
however, this possibly was not observed because oxygen was gettered
extensively by the zirconium deposits in the vapor zome.

The oxygen analyses obtained from the inner wall specimens of AS-55
alloy capsule No. 9 revealed a higher oxygen content in the liquid
than in the condensing zone. These results agree with the oxygen
analyses obtained for AS-55 alloy capsules Nos. 8 and 12 which were
exposed for 5000 hr. Except for the analysis from the liquid zome,
the oxygen analyses obtained from the inmner wall specimens of AS-55
alloy capsule No. 11 agree with the data for the other AS-55 alloy
capsules (Nos. 8, 9, and 12). The oxygen content in the inner wall
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sample from the liquid zone of AS-55 alloy capsule No. 11 was consider-
ably lower than that in the other AS-55 alloy capsules. Pertinent
data are illustrated in Figure 25.

In comparing the oxygen analyses of AS-55 alloy capsules Nos. 8, 9, 11,
and 12 with the analyses before exposure, a loss of oxygen in the con-
densing zone is apparent and, most likely, was the result of leaching
by the high purity condensate. No large differences in the condensing
zone are apparent between the 5000- and 10,000-hr tests. Examination of
the oxygen contents in the liquid zone reveals that the oxygen leached
from the condensing zone remained in the liquid potassium, evidenced by
the fact that the oxygen was not gettered by the yttrium-zirconium in
the AS-55 alloy capsule wall. It may be hypothesized that the oxygen
reacted with yttrium/zirconium taken in solution in the liquid potassium
to form finely divided Y503 or a complex yttrium-zirconium oxide. Al-
though the solution of yttrium in potassium has not been observed experi-
mentally, as related previously, yttrium has been demonstrated to_be
soluble, to some extent, in a lithium-columbium system at 1500°F.8
Also, it is possible for the oxygen to react with yttrium/zirconium at
the surface of the capsule wall in locations other than that which was
chemically analyzed. The substantial loss of oxygen observed in the
liquid zone of AS-55 capsule No. 11 may be the result of similar
phenomena and/or the fact that the potassium in capsule No. 11 was of
higher purity than that in capsule No. 9. It should be noted that
AS-55 alloy capsule No. 11, which exhibited the extensive loss of
oxygen in the liquid zone, contained the largest amount of the white
deposit visually observed in any of the AS-55 alloy capsules. This
white deposit (discussed earlier) is presumed to be ¥,05.

A comparison of the oxygen content of the inner wall specimens from
D-43 alloy capsule No. 4 with the analyses before exposure reveals
no apparent leaching of oxygen from the condensing zone and a definite
gettering of oxygen in the liquid zone. Little difference in the
oxygen content in the condensing zone is observed between D-43 alloy
capsule No. 2 exposed for 5000 hr, and D-43 alloy capsule No. 4,
exposed for 10,000 hr. Considerably more gettering of oxygen in the
liquid zone is evident in the longer test (D-43 alloy capsule No. 4).
These data are illustrated in Figure 26. It should be noted that the
suspected difference in the purity of the potassium used to fill
capsules Nos. 6 and 7 (Cb-1Zr alloy) and that used to fill capsules
Nos. 2 and 4 (D-43 alloy) does not seem to affect the magnitude of
the oxygen gradient observed between the condensing zone and the
liquid zone of the capsule after the test exposure.

Electron microprobe analyses disclosed no loss of zirconium from
the outside diameters of the Cb-1Zr alloy and D-43 alloy capsules
tested for 10,000 hr. Nor was a loss of zirconium or yttrium found
in the AS-55 alloy capsules tested for 10,000 hr.
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Metallographic Examination. The metallographic examination of the
capsules was conducted on samples from the liquid zone, the liquid-
vapor interface, and the condensing zone. Figure 23 cites the location
of the samples.

No significant attack was observed in either the base metal (Figure 27)
or the welds of any of the capsules. Micrographs of capsule welds in
the condensing zones in Figure 28 are typical of the weld structures
observed in the other regions of the capsules. The large grain sizes
in the welds of the Cb-1Zr and D-43 alloys are quite evident when
compared to the smaller grain size of the weld in the AS-55 alloy.

A grain boundary precipitate, observed in the Cb-1Zr alloy after
10,000-hr testing, is probably Zr0O,; an electron microprobe analysis
indicated that the particles were rich in zirconium (Figure 29). Re-
examination of the metallographic specimens from Cb-1Zr alloy capsule
No. 6 which was exposed for 5000 hr revealed a similar but, as might
be expected, less extensive precipitate.

Relatively large grains observed, after testing, on the inside
diameter of Cb-1Zr alloy capsule No. 7 in the condensing zone (Figure 30)
are believed to result from accelerated grain growth following the
previously discussed loss of oxygen and zirconium from the condensing
zone, No grain boundary precipitate was observed near the inside
diameter in the condensing zone of Cb-1Zr alloy capsule No. 7; this
correlates with an anticipated shift in the Zr02=§£fgg equilibria
as the result of the decreasing zirconium and oxygen content in the
columbium. This type grain growth was not observed in Cb-1Zr alloy
capsule No. 6 tested for 5000 hr.

The same morphological change observed in AS-55 alloy capsules ex-
posed for 5000 hr was observed in the AS-55 alloy capsules exposed
for 10,000 hr (Figure 31). The Widmanstatten carbide structure seen
in the matrix of the pre-test AS-55 alloy sheet material has gone
into solution and a new precipitate has formed in the grain boundaries.
Stain etching techniques and electron microprobe analysis tentatively

identified the grain boundary precipitate as a columbium-zirconium
carbide.

A grain boundary precipitate was observed in D-43 alloy capsule
No. 4 after 10,000 hr of testing and, again, was tentatively identi-
fied as a columbium-zirconium carbide through stain etching techniques
(Figure 32). A re-examination of D-43 alloy capsule No. 2, which was
tested for 5000 hr, revealed a similar grain boundary precipitate.

Except the inside diameter of the condensing zone of Cb-1Zr alloy
capsule No. 7 , the other capsules evidenced no unusual grain growth
as a result of the 10,000-hr exposure to refluxing potassium or high
vacuum (10-9 torr).
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Figure

(A350112)

Microstructure in Condensing Zone of Cb-1Zr Alloy Reflux
Corrosion Capsule No. 7 After 10,000-Hr Exposure to Potassium
at 2000°F in a Vacuum of 10~ 2 Torr.

Etchant: 60% Glycerine, 20% HNOS, 20%HF Mag. Top: 250X
Bottom: 50X

-56-




Post Test (A160111)
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Figure 31. Microstructure of AS-55 Alloy Reflux Corrosion Capsule Before
and After 10,000-Hr Exposure to Potassium at 2000 F in a
Vacuum of 1079 Torr.

Etchant: Stain Etched Mag.: 1000X
N.A.: 0.85
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Figure 32.

- S - e B belt

Pre~Test (A390111)

Microstructure of D-43 Alloy Reflux Corrosion Capsule Before
and After 10,000-Hr Exposure to Potassium at 2000 F in a
Vacuum of 107 Torr,

Etchant: Stain Etched Mag.: 1000X
N.A.: 0.35
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Overall, results of the 10,000-hr reflux capsule corrosion tests
are similar to those of the 5000-hr tests.

Hardness Measurements. Transverse microhardness surveys were made
across the capsule walls (Figures 33 through 36). A comparison of
the hardness data obtained for the Cb-1Zr alloy and AS-55 allov
capsules tested for 10,000 hr showed no significant differences
in hardness as compared with the results obtained from the 5000-hr
tests. The loss in hardness in the Cb-1Zr alloy capsules is attri-
buted to recovery/recrystallization phenomenon. Again, the AS-55
alloy capsules exhibited a significant decrease in hardness which
would follow the carbide solution and reprecipitation previously dis-
cussed as well as from the loss in oxygen due to the exposure to
potassium. The D~43 alloy capsule No. 4 tested for 10,000 hr showed
a slightly larger decrease in hardness than that observed in the
D-43 alloy capsule No. 2 tested for 5000 hr. This decrease in hard-
ness in the D-43 alloy capsules is attributed to carbide precipitation
in the grain boundaries and recovery/recrystallization during testing,
since the material was not completely recrystallized before the
initiation of the test.

Weight and Thickness Measurements. The weight and thickness changes
(Table VIII) that ensued from subjecting the bend specimens to the
potassium environment within the capsules are quite small and con-
sidered insignificant.

Bend Tests. All the bend specimens, which were exposed to potassium
liquid and vapor, successfully withstood a 1 "T", or smaller, bend
through a 105-degree bend angle at room temperature.

Stress—-Rupture Tests. Two stress-rupture specimens were machined
from the walls of AS-55 capsules Nos. 9 and 11, two from D-43
capsule No. 4, and two from Cb-1Zr capsule No. 7 in such a manner
that the location of the gauge section of one specimen of each
capsule is in the liquid region and the location of the gauge length
of the second specimen is in the condensing region. The two speci-
mens from AS-55 capsule No. 11 were machined from the inner 0.070-in.
thick portion of the capsule wall; all other specimens, from the
entire capsule wall. In an effort to eliminate the possible
strengthening effect of surface contamination resulting from A120
grit blasting of the outside diameter of the capsules, the outer
0.010 in. was removed from the specimen from AS-55 capsule No. 11.

A1l specimens were tested at 20Q0°F. The results of these tests
and the tests previously reported” on capsules exposed for 5000 hr
are presented in Table IX; corresponding Larson-Miller parameter
plots are shown in Figures 37, 38, and 39. An additional stress-
rupture test (discussed in reference 2) of a specimen machined from
the condensing zone of AS-55 capsule No. 12, which was exposed for
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Table IX. Stress-Rupture Data of Cb-1Zr, AS-55, and D-43 Alloys
Before and After 5000-and 10,000-Hr Exposures to Potassium at 2000°F

(Stress-Rupture Data Obtained at 2000°F)

Exposure Rupture Elong./ Larson-Miller
Test Time, Stress, Press., Life, 1 in., Parameter,
Specimen No. hr psi torr hy % T(15+logt)x10'3
Cb-1Zr a
Capsule No. 7 -7
Liquid Zone 15 10,000 10,000 10_7 880.6b 31.0 44,0
Condensing Zone 16 10,000 10,000 10 123.4 55.0 43.4°
AS-55 d -6
Before Exposure 1 — 22,000 10_6 14.0 10.1 39.7
Before Expsoured 2 ——— 18,000 10_6 43.0 7.0 41.0
Before Exposure 3 -— 15,000 10 113.0 5.8 42.0
e
Capsule No. 8 -8 £ £
Liquid Zone 7 5,000 15,000 10_8 871.0 1.6 43.8
Condensing Zone 8 5,000 15,000 10 183.0 19.8 42 .4
Capsule No. 128 8
Condensing Zone 17 5,000 15,000 10 9.1 16,0 39.2
h
Capsule No. 9 -8
Liquid Zone 11 10,000 15,000 10_7 13.7f 10.2 39.6f
Condensing Zone 12 10,000 15,000 10 619.0 3.8 43.7
Capsule No. 11t -8
Liquid Zone 18 10,000 15,000 10_7 16.4 13.0 39.8
Condensing Zone 19 10,000 15,000 10 9.6 12.0 39.4
D-43 ; -6
Before Exposure) 4 -— 25,000 107, 51.0 14.8 41.1
Before Exposure", 5 -— 22,000 10_6 89.0 20.4 41.6
Before Exposure 6 - 20,000 10 118.0 26.7 42,0
k
Capsule No. 2 -8
Liquid Zone 9 5,000 20,000 10_8 140.0 28.8 42,1
Condensing Zone 10 5,000 20,000 10 382.0 30.5 43,2
Capsule No. 4" -7
Liquid Zone 13 10,000 20,000 10_8 18.1 31.0 39.8
Condensing Zone 14 10,000 20,000 10 11.6 29.0 39.4

a
Cb~1Zr alloy (Heat No. 510); specimens machined from wall of reflux capsule No. 7; test conducted in getter-ion

pumped system.

bElement short caused 250°F overtemperature from 116 hr.

CpParameter calculated for 466 hr at 2000°F (since parameter for 7.4 hr at 2250°F is equivalent to 350 hr at 2000°F).
dAs—55 alloy (NAS-5515); 0.060-in. thick sheet; heat-treated 1 hr/2800°F + 1 hr/2400°F; tests conducted in

liquid nitrogen trapped, oil diffusion pumped system.

®AS-55 alloy (NAS-5514); specimens machined from wall of reflux capsule No. 8; tests conducted in getter-ion

pumped system.

fSpecimen did not fail.

BAs-55 alloy (NAS-5515); specimens machined from inner 0,070-in. thick portion of wall of reflux capsule No. 12;

test conducted in getter-ion pumped system.

hAS-55 alloy (NAS-555); specimens machined from wall of reflux capsule No. 9; test conducted in getter-ion

pumped system.

1as-55 alloy (NAS-5515); specimens machined from inner 0.070-in, thick portion of wall of reflux capsule No. 11;

tests conducted in getter-ion pumped system.

JD—43 alloy (D-43-322); 0.055-in. thick sheet; heat-treated 1 hr/2200°F + 1 br/2400°?; tests conducted in

liquid nitrogen trapped, oil diffusion pumped system.

k
D-43 alloy (D-43-322); specimens machined from wall of reflux capsule No. 2; tests conducted in getter-ion

pumped system.

mD-43 alloy (D-43-322); specimens machined from wall of reflux capsule No. 4; test conducted in getter-ion

pumped system.
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4 // Typical stress-rupture properties of Cb-1Zr alloy (Cf. "Recent General Electric
4 Co. Developments in Columbium-Base Alloys,' FPL-501-2, Feb. 1962).

'®) Rupture properties of 0.060-in. thick Cb-1Zr alloy sheet (Cf. H.E. McCoy,
"Creep Properties of the Nb-1% Zr Alloy,' J. Less Common Metals, 8, pp. 20-35,
1965) .

\V4 Cb-1Zr alloy (519); specimen machined from wall of condensing zone of reflux

capsule no. 7; rupture test performed in a vacuum of 10~° torr.

\\ 4 Cb-1Zr alloy (519); specimen machined from wall of liquid zone of reflux cap-
sule no. 7; rupture test performed in a vacuum of 10-’ torr.

Figure 37. Stress-Rupture Properties of Cb-1Zr Alloy Before and After 10,000-Hr
Exposure to Potassium at 2000°F in a Vacuum-of 10-9 Torr.
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IX:
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Stress-Rupture Properties of D-43 Alloy Before ang After
5000-and 10,000-Hr Exposures to Potassium at 2000°F in a
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5000 hr, also was performed and the results are included in Table IX
and Figure 38. This specimen from AS-~55 capsule No. 12 was machined
from the inner 0.070-in. thick portion of the capsule in a similar
manner and for the same reason (i.e., to eliminate the possible
strengthening effect of grit blasting as discussed earlier) as the
specimens from AS-55 capsule No. 11.

Data was obtained from specimens Nos. 1 through 6 (Table IX), which
had not been exposed to potassium, in a liquid nitrogen trapped, cold-
wall oil diffusion pumped, stress-rupture facility that can achieve
a pressure in the 10'6 torr range at the test temperature. . Stress-
rupture data was obtained from specimens Nos. 7 through 16 and 17
through 19, which had been exposed to potassium, in getter-ion pumped
high vacuum stress-rupture facilities with pumping speeds of 400 £%/sec
and 100 ¢/sec, respectively (Figure 40). These two facilities can
achieve pressures in the 10~9 torr range, when cold,and in the 107° torr
range, when testing refractory metals at temperatures on the order
of 2000°F. To determine the extent of environmental contamination,
chemical analyses for the interstitial elements were obtained on a
number of specimens after stress-rupture testing.. The data are
presented in Table X.

With one exception, all the specimens machined from the walls of
the AS-55 alloy and D-43 alloy reflux corrosion capsules after the
10,000-hr exposure to potassium exhibited significantly shorter
rupture lives at 2000°F than the specimens machined from the untested
sheet material used to fabricate the capsules. The long rupture life
of the specimen machined from the condensing zone of capsule No. 9
(AS-55 alloy), probably, is the result of oxygen contamination from
the Al,03 grit blasting of the capsule outside diameter, as indicated
by the high oxygen content in the outside portion of the capsule in
the condensing zone. Both stress-rupture specimens from capsule
No. 11 (AS-55 alloy), from which the outer, grit-blasted surface had
been removed before testing, displayed a shorter rupture life than
that of the starting material which can be attributed to carbide
coalescence and the leaching of oxygen from the capsule inner wall.

The specimen (machined from the condensing zone of AS-55 alloy
capsule No. 12, exposed for 5000 hr) subjected to the additional
stress-rupture test also showed a shorter rupture life than that
of the starting material, which correlates with the data obtained
from AS-55 capsule No. 11, exposed for 10,000 hr. In the tests cited,
the outer grit blasted surfaces were removed from the specimen prior
to rupture testing. The results of these tests contrast with earlier
data obtained on capsule No. 8 (AS-55 alloy exposed for 5000 hr),
which showed a longer rupture life than the starting material. 1In
this latter case, the specimens were machined from the entire cross
section of the capsule wall, and the weakening effect of the observed
carbide coalescence is masked by the increase in oxygen caused by
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grit blasting of the outer capsule surface and possible contamination
during rupture testing.

The rupture data obtained from specimens machined from the wall of
capsule No. 4 (D-43 alloy) show that the rupture life of both the
specimen from the liquid zone and the specimen from the condensing
zone is shorter than the rupture life of the starting material before
exposure to potassium. Also, the rupture life of the specimen from
the liquid zone is slightly longer than that of the specimen from
the condensing zone. These data would appear to substantiate the
higher oxygen content in the liquid zone as compared to that in the
condensing zone, a result of the gettering action during the exposure
to potassium. A comparison between the rupture data obtained from
specimens machined from capsule No. 4 (D-43 alloy), and the rupture
data obtained earlier from No. 2 (D-43 alloy exposed for 5000 hr)
showed no change in rupture life for the specimen from the liquid
zone and a longer rupture life for the specimen from the condensing
zone. However, coalescence of carbides was observed in all regions
in both capsules Nos. 2 and 4.

The longer rupture lives of the specimens machined from the liquid
and condensing zones of capsule No. & (Cb-1Zr alloy) are attributed
to the increased oxygen concentration in the capsule wall caused by
the gettering action in the liquid zone during the exposure to po-
tassium and grit blasting of the outer capsule wall before the test
exposure.
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A. SUMMARY OF PROCESSING DETAILS OF AS-55, D-43, AND Cb-1Zr

ALLOY SHEET USED IN THE FABRICATION OF REFLUX CORROSION CAPSULES

Processing of AS-55 Alloy Heat NAS-555

1.

10.

11.

12.

13.

Single consumable dc arc melt,

Cropped ingot dimensions: 2.9 in. in diameter x 4.45 in. long;
10.75 1b.

Ingot split lengthwise and one-half machined into forging billet.

Forging billet dimensions: 1.22 in. thick x 1.75 in. wide x
4.30 in. long; 2.87 1b.

Titanium clad forging billet dimensions: 1.333 in. thick x 3.93
in. wide x 6.43 in. long.

Clad billet soaked 45 min at 2200°F in argon.

Five blows on 2,500-1b forge hammer to 0.800-in. thick over-all
397 reduction.

Clad forging re-soaked 15 min at 2200°F in argon.

Clad forging rolled in the direction of the long axis of the
ingot:

Thickness, Red./Pass, Red. (Total),
Pass in. % %
1 0.613 24 24
2 0.465 24 42
3 0.322 30 60

Soaked 15 min at 2200°F between passes.
Plate turned end for end each pass.

Stripped, pickled, and trimmed plate dimensions: 0.264 in.
thick x 3.10 in. wide x 10.70 in. long; 2.7 1b.

One-third of plate sectioned and discarded (low stirring region
of original ingot).

Plate cold rolled 65% to 0.080-in. thick sheet by successive
10-mil reductions.

Sheet stress-relieved one hr at 2300°F.
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Processing of AS-55 Alloy Heat NAS-5514

10.

11.

12.

Single consumable dc arc melt.

Cropped ingot dimensions: 3.05 in. in diameter x 4.37 in. long;
11.31 1b.

Ingot split lengthwise and one half-machined into forging billet.

Forging billet dimensions: 1.00 in. thick x 1.77 in. wide x
3.93 in. long; 2.25 1b.

Titanium clad billet dimensions: 1.124 in. thick x 4.37 in.
wide x 6.50 in. long.

Clad billet soaked 45 min at 2200°F in argon.

Six blows on 2,500-1b forge hammer to 0.550-in. thick over-all
51% reduction.

Clad forging re-soaked 15 min at 2200°F 1in argon.

Clad forging rolled in direction of the long axis of the ingot
on first pass, normal to the long axis on second pass, and
returned to the original direction on final pass.

Thickness, Red. /Pass, Red. (Total),
Pass in. % %
1 0.443 19 19
2 0.353 20 35
3 0.280 20 49

Soaked 15 min at 2200°F between passes.
Plate turned end for end each pass.

Stripped, pickled, and trimmed plate dimensions: 0.216 in. thick
x 3.87 in. wide x 6.5 in. long; 1.68 1b.

Plate cold rolled 62% to 0.080-in. thick in successive 10-mil
reduction.

Sheet stress-relived one hr at 2300°F.

Processing of AS-55 Alloy Heat NAS-5515

1.

Single consumable dc arc melt.

Cropped ingot dimensions: 3.65 in. in diameter x 10.3 in. long;
36.9 1b.

Ingot sectioned to remove defective area.

Billet sealed in molybdenum can.
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10.

Clad billet extruded 5.6:1 at 2600°F to 0.70-in. thick x 2.68

in. wide sheet bar.

Clad extrusion soaked 45 min at 2200°F in argon.

Clad extrusion rolled in direction perpendicular to extrusion

direction:
Thickness, Red. /Pass, Red. (Total),
Pass in. % %
1 0.632 10 10
2 0.546 13 22
3 0.454 16 35
4 0.360 20 48

Soaked 15 min at 2200°F between passes.
Plate turned end for end each pass.

Clad plate stripped, pickled, spot-ground and trimmed.

Plate cold rolled 75% to 0.082-in. thick sheet by successive

0.010-in. reductions.

Sheet stress-relieved one hr at 2200°F.

Processing of D-43 Alloy Heat D-43-322

1.

O 00 ~N O WU

Double consumable dc arc melt.

Ingot dimensions: 8 in. in diameter.

Billet extruded 4:1 at 2000°F to 2 in. thick x 6 in. wide

sheet bar.

Extrusion warm rolled at 2000°F; temperature reduced gradually

until sheet was 0.250-in. thick.

Plate annealed one hr at 2200°F.

Plate cold rolled to 0.130-in. thick sheet.
Sheet annealed one hr at 2200°F.

Sheet cold rolled to 0.080-in. thick sheet.
Sheet stress-relieved one hr at 2200°F.

Processing of Cb-1Zr Alloy Heat 519

1.

3.

Single electron beam melt.

Ingot dimensions: 5 in. in diameter x 20 in. long; 120 1b.

Ingot warm forged at 400°F to plate: 1.125 in. thick x 12

in. wide x 20 in. long.
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4,

Plate cold rolled to 0.100-in. thick sheet.
Sheet annealed one hr at 2200°F.
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B. DATA SHEETS FOR THE CHEMICAI, ANALYSES
OF POTASSIUM BY THE ZIRCONIUM-GETTER TECHNIQUE
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Table I. Potassium Analyses by Zirconium-Gettering Technique

(Potassium sampled during filling of Cb-1Zr alloy capsules

Nos. 6 and 7 and AS-55 alloy capsules Nos. 8 and 9)

K Impurities

Zr Analyses, (Calcd.),
Auxiliary Zr Sample _ppm ppm
Capsule No. Designation 0 N H C 0 C
2 a 1740 17 25 --- 712 -
b 1430 16 7 - 502 -
c 2320 20 31 -—-- 1104 -
da 1760 19 54 300 725 133
Av. 1813 18 29 300 760 133
Notes:

1. Auxiliary capsule exposed in a vacuum at 1400°F for 100 hr.

2. Cb-1Zr alloy reaction capsule one in. in diameter x 6 in.

long x 0.080-in. thick wall.

3. Initial analyses of zirconium (ppm):

Sample 0 N H C
a 638 19 18 -
b 840 14 25 70
< 587 31 40 135

Av. 688 21 28 103

4. Auxiliary capsule No. 2 contained 7.14 gm potassium, 4.828 gm

zirconium (20 in.¢ surface area).

5. Analysis of oxygen, nitrogen, and hydrogen in zirconium by

vacuum fusion techniques.

6. Analysis of carbon in zirconium by conductometric techniques.

7. Potassium from Shipping Container A-4 slagged, filtered,

distilled, and hot trapped.
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Table TI. Chemical Analyses of As-Received
Potassium from Shipping Container No. 137

K Impurities

Zr Analyses, (Caled.),
Auxiliary pPPm ppm
Capsule No. 0 N H 0 N Remarks
3 1326 13 31.5 426 9 Potassium fill
tube was not
valved; capped
in air.
4 1229 27.5 39.5 406 5 Valves placed

at each end of
potassium filled
tube.

Notes:

Auxiliary capsule exposed in a vacuum at 1400°F for 100 hr.
Cb-1Zr alloy reaction capsule one-in. in diameter x 6 in. long.

3. Initial analyses of zirconium (ppm):

Sample 0 N H C
a 638 19 18 -
b 840 14 25 70
< 587 31 40 135

Av. 688 21 28 103

' 4. Auxiliary capsule No. 3 contained 8.9705 gm potassium, 5.8035 gm
zirconium (20 in.“¢ surface area).

| 5. Analysis of oxygen, nitrogen, and hydrogen in zirconium by vacuum
fusion techniques.

! 6. Potassium from Shipping Container No. 137 slagged, filtered, and
hot trapped.
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Table III. Potassium Analyses by Zirconium-Gettering Technique
(Potassium sampled during filling of AS-55 alloy capsules Nos.
11 and 12 and D-43 alloy capsules Nos. 2 and 4)

K Impurities

Zr Analyses, (Caled.),
Auxiliary ppm ~ ppm
Capsule No. 0 N H 0
7 816 11 11 22

Notes:

1. Auxiliary capsule exposed in a vacuum at 1400°F for 100 hr.

2, Cb-1lZr alloy reaction capsule one in. in diameter x 10 in.
long x 0.080-1in. thick wall.

3. 1Initial analyses of zirconium (ppm):

Sample 0 N H C
a 638 19 18 —
b 840 14 25 70
c 587 31 40 135

Av, 688 21 28 103

4. Auxiliary capsule No. 7 contained 30.2 gm potassium, 5.1427 gm

zirconium (20 in.2 surface area).

5. Analysis of oxygen, nitrogen, and hydrogen in zirconium by
vacuum fusion techniques.

6. Potassium from Shipping Container No. 137 slagged, filtered,

and hot trapped at MSA and re-hot trapped at General Electric
for 200 hr at 1300°F.
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